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Onset of thermal convection in a horizontal layer of granular gas
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The Navier-Stokes granular hydrodynamics is employed for determining the threshold of thermal convection
in an infinite horizontal layer of granular gas. The dependence of the convection threshold, in terms of the
inelasticity of particle collisions, on the Froude and Knudsen numbers is found. A simple necessary condition
for convection is formulated in terms of the Schwarzschild’s criterion, well known in thermal convection of
(compressibleclassical fluids. The morphology of convection cells at the onset is determined. At large Froude
numbers, the Froude number drops out of the problem. As the Froude number goes to zero, the convection
instability turns into a recently discovered phase-separation instability.
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[. INTRODUCTION hydrodynamics demands small Knudsen numbers for its va-
lidity. In addition, it has been shown that at moderate inelas-
Fluidized granular media exhibit a plethora of fascinatingticities g nonhydrodynamic effect&uch as the lack of scale
pattern-formation phenomena that have been subjects @eparation, the normal stress difference and non-Gaussianity
much recent interedtl]. In this work, we address thermal in the particle velocity distributionmay become important
(buoyancy_driveh granu]ar COﬂVECtiOI’[Z—G]. Being unre- [15] Therefore, the Navier-Stokes granular hydrodynamics
lated to the shear or time dependence introduced by the sy& expected to be accurate quantitatively only for nearly elas-
tem boundaries, it resembles the Rayleigm&e convec- tic collisions, g<1. Though restrictive, the nearly elastic
tion in classical fluid 7] and its compressible modifications limit is conceptually important. Also, one can expect some of
[8—17. In classical fluid convection requires an externallythe results, obtained in this limit, to be still qualitatively
imposed negative temperature gradient, that is a temperatuV@"d for larger inelasticities, such as those encountered in
gradient in the direction opposite to gravity. In a vibrofluid- €xperiment.
ized granular medium a negative temperature gradient sets in In Ref. [5] the full set of nonlinear hydrodynamic equa-
spontaneously because of the energy loss by inelastic collfions for thermal granular convection was solved numerically
sions. Convection develops when the absolute value of th# a 2D box with aspect ratio 1. It was observed, in qualita-
temperature gradient is large enough. In the simplest modéive agreement with MD simulatiorig], that the static state
of inelastic hard spheres that we will use it happens when thef the system(a steady state with a zero mean flogives
inelasticity coefficienty=(1—r)/2 exceeds a critical value Way to convection via a supercritical bifurcation, the inelas-
depending on the rest of the parameters of the system. Hertcity g being the control parameter. The present work em-
r is the coefficient of normal restitution of particle collisions. Ploys the same hydrodynamic formulatif®] to perform a
Thermal granular convection was first observed in mo-systematidinear stability analysis of the static state. We de-
lecular dynamicg§MD) simulations of a system of inelasti- termine the convection threshold as a function of the scaled
cally colliding disks in a two-dimensiondRD) square box parameters of the problem and of the horizontal wave num-
[2]. The boundaries of the bop2] did not introduce any ber of small perturbations. This analysis makes it possible to
shear or time dependence’ the system was driven by a Streﬁedict the convection threshold and determine the morphol—
free thermalizing base. The top wall was perfectly elasticogy of the convection cells in a system with an arbitrary
while the lateral boundaries were either elastic or periodic@spect ratio, including an infinite horizontal layer, a standard
Experiment with a highly fluidized three-dimensional granu-Setting for convection in classical flui§g,16]. We also for-
lar flow [3] gives strong evidence for thermal convection, Mulate a simplenecessarybut not sufficient criterion for
though energy loss at the side walls introduces complicationgermal granular convection in terms of the Schwarzschild’s
[3,6]. A clear identification of thermal convection in experi- criterion, well known in thermal convection ¢tompress-
ment requires a large aspect ratio in the horizontal directioniple) classical fluidg8]. Finally, we take the limit of a zero
so thatmultiple convection cells can be observed. MD simu- gravity and establish the connection between thermal con-
lations in 2D of a vibrofluidized granular system with a large vection and a recently discovered phase-separation instabil-
aspect ratio indeed show multiple convection cgilk ity [17-22.
This work deals with a theory of thermal granular convec-
t@on in a system with a large aspect ratio.. Recently, a con- II. MODEL AND STATIC STATE
tinuum model of thermal granular convection has been for-
mulated[5] in the framework of the Navier-Stokes granular Let a big number of identical smooth hard disks with
hydrodynamics. In the dilute limit, the Navier-Stokes hydro-diameterd and massn move and inelastically collide inside
dynamics(or, more precisely, gasdynamjds systematically an infinite two-dimensional horizontal layer with heigHt
derivable from more fundamental kinetic equati¢t8,14.  The gravity acceleratiog is in the negativey direction. The
Like any other hydrodynamic approach, the Navier-Stokesystem is driven by a rapidly vibrating base. We shall model
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it in a simplified way by prescribing a constant granular tem- L1
peratureT, aty=0. The top wall is assumed elastic. Hydro-
dynamics deals with coarse-grained fields; the number den-
sity of grainsn(r,t), granular temperaturé(r,t), and mean 1
flow velocity v(r,t). In the dilute limit, the scaled governing ~
equations ar¢5] =y
0.9}
dn/dt+nV.v=0, (1)
ndv/dt=V-P—Fne, (2 0l
NdT/dt+nTV.v=K V- (TYVT)-KR?T¥.  (3) 0 05 y 1

Here, d/dt=4/dt+v-V is the total derivativeP=—nTI FIG. 1. Static temperatur@olid line) and densitydashed ling

+(1/2)K TY?D is the stress tensoR=(1/2)[Vu+(Vv)"]  profiles forF=0.1 andR=0.5.

is the rate of deformation tensdd=D— (1/2) tr(D)! is the

deviatoric part oD, andl is the identity tensor. In the dilute where the primes denote the derivatives. The boundary
limit, the bulk viscosity of the gas is negligible compared to conditions areT¢(0)=1 and T¢(1)=0, the normalization
the shear viscosit{13], so only the shear viscosity is taken condition isfédy ns(y)=1. The static statésee Fig. 1is

into account. In addition, we have neglected the small vischaracterized bywo scaled numbersE and R, and can be
cous heating term in the heat balance ). The inelastic found analytically by transforming from the Eulerian coordi-
contribution to the heat flukl4] is proportional tog and can  nate y to the Lagrangian mass coordinates(y)

be safely neglected at smajl In the 2D geometry, the three = [¥n (y’)dy’ [5]. At large enoughR, a density inversion
scaled parameters entering E¢®) and (3) are the Froude develops: a denséheaviei gas is located on the top of an
number F=mgHT, the Knudsen number K  underdenséighter gas. This is clearly a destabilizing effect
=27 Y4dH(n)) "%, and the relative heat loss parameterthat drives thermal convection. However, this effect is nei-
R=8qK™ 2. Furthermore(n) is the total number of particles ther sufficient, nor necessary for convection, see below. The
per unit length in the horizontal direction, divided by the actual (necessary and sufficigntriterion should take into
layer heightH. It will be convenient to use the relative heat account the heat conduction and viscosity that scaledike
loss numbeR instead ofg. In Egs.(1)—(3), the distance is  the governing equations and have a stabilizing role. A small
measured in the units ¢, the time in units oH/Ty2, the  sinusoidal perturbation in the horizontal direction is unstable
density in units of(n), the temperature in units af;, and  with respect to convection if the relative heat loss parameter
the velocity in units ofTé’Z. The Navier-Stokes hydrody- R exceeds a critical value that depends BnK, and the
namic model is expected to be valid when the mean free pathorizontal wave number.

of the particles is much smaller than any length scaled

the mean collision time_is much _smalle_r thgn any _time gcale IIl. THE LINEAR STABILITY ANALYSIS
described hydrodynamically. This implies, in particular, that
the Knudsen number should be sm#lk<1. The linear stability analysis involves linearization of Egs.

The boundary conditions for the temperature &g,y  (1)—(3) around the static solutionsg(y) and T4(y). The
=0t)=1 at the base and a zero normal component of théinearized equations are
heat flux at the upper walbT/dy(x,y=1t)=0. For veloci-
ties, we demand zero normal components and(slipstress an vy 0
conditions at the boundaries. The total number of particles in F s T @(nsvy) =0, (6)
the system is conserved

1t ! n a—vz—V(n T+Tﬁ)+3Kv-(T1’2f))—Fﬁ 7
Iimi dxf dy n(x,y,t)=1, (4) S gt s s 2 s %
Lo -L 0
where we have introduced the horizontal dimensitn Zhe T / 2,17 2312
—+T +n T V. v=KV4(TT)—KRNT
hydrodynamic problem is characterized by the three scaled | gt = s°Y] " 1s's (T"D) 5°s

numbersF, K, andR.

The simplest steady state of the system is the static state,
no mean flow. At a nonzero gravity the densityand tem-
peratureTg of the static state depend only on and are

described by the equations wheren, T, andv denote small perturbations. Exploiting the
) Yomr ” 3 translational symmetry of the static state in the horizontal
(NsTg)'+Fng=0 and (TsTg)'=RNSTS"=0, (5  direction, one can consider a single-Fourier mode in

2n 3T
_+_

X
ng 2Tg

, ®

021306-2



ONSET OF THERMAL CONVECTION IN A HORIZONTA.. .. PHYSICAL REVIEW E 67, 021306 (2003

n(x,y,t)=e" "N(y)cosk,x, ! 45
T(x,y,t)=e "0 (y)cosk.x, 4
0.8 )
vy(X,y,1)=e~ "u(y)sink.x, . (a4 i
a4 3.5 =

vy(X,y,t)=e" " (y)coskyx, (9 0k
where y is the scaled growth or decay rate, akgdis the 3
scaled horizontal wave number. Substituting &y.into Eqgs. (b)
(6)—(8) and eliminatingN, we obtain three homogeneous or- ] 25
dinary differential equations that can be written as a single 0 2 kx 4 0 08 kX L6

equation for the eigenvectdf(y)=[0O(y),u(y),v(y)], cor-
responding to the eigenvalue FIG. 2. The critical values of the relative heat loss paramiter

for the convection instabilityfnonzero gravity,(a)] and phase-

AU"”+BU’+CU=0, (10 separation instabilityzero gravity,(b)] versus the horizontal wave
numberk, . The Knudsen numbdf =0.02.
where
K ag 0 0 ploys the linearity of thg problem. We first complement the
three boundary conditions at the base by thegbitrary
A=| 0 Kap/4 0 ) (11) boundary conditionsat the baseand compute numerically
0 0 Kag/d—ngTs/y three independent solutions of H40). Thegeneralsolution
can be represented as a linear combination of these three
2Ka, 0 — 2KRN2T3? y—ngTy independent solutions that includes three arbitrary coeffi-
cients. Demanding that the three remaining boundary condi-
B= 0 Ka, /4 KensTsly ' tions at the topbe satisfied, we obtain three homogeneous
-ng —kynTg/y Ka /4—Tgnily linear algebraic equations for the coefficients. A nontrivial

(12 solution requires that the determinant vanish, which yields
the eigenvaluey. Varying R at fixedF, K, andk,, we deter-
mine the critical valueR= R, for instability from the condi-
tion Rey=0. We found this algorithm to be accurate and
efficient.

In the whole region of the parameter space that we ex-
plored we found that Iny=0 at the instability onset. There-
fore, thermal granular convection does not exhibit oversta-

while the elements of matri€ are
C11=K a,—3KRn2ag/2— Kk2ay+ yn,

Cio= — 2KRMZTI% [ y— kT,

Cia=—2KRn T/ /y—n,T.,
Cor=kyns,
Coo=k2ngTo/ v+ yng— Kk2ay/4,
Cos=k,Tsnl/y—Kkya,/4,
Ca1=—ng,
Cyo=—Kk,a,/4,
Cas=(TIng+TLnL)/ v+ yns— KkZay/4. (13
We have denoted for brevitg,=TYqy), a;=a;, anda,

=ayg . The boundary conditions for the functiofs u, andv
are the following:

0(0)=0'(1)=u’'(0)=u’'(1)=v(0)=v(1)=0. (14

Equation (10) with the boundary condition$14) define a

bility and can be analyzed in terms of marginal stability.
Figure Za) shows the marginal stability curves versus the
horizontal wave numbek, at a fixedK and two different
values offF [23]. The curves exhibit minimak{ ,R%), simi-
larly to the convection in classical fluidg]. Therefore, the
convection threshold in the horizontally infinite layer Rs
=R} . Close to the onset, the expected horizontal size of the
convection cell is Z/k} . Figure 3 depicts these convection
cells obtained by plotting the field lines of the respective
velocity field [u(y)sink, X, v(y)cosk,x], found numerically.
One can see that at smé&llthe cells occupy the whole layer
of granular gas and are elongated in the horizontal direction.

e ™18 (o)

1O Q 1O

0
0 1 x 2 3 0 0.1 X 0.2 03

FIG. 3. The convection cells at the instability ongetk} and

linear boundary-valueproblem, there are three boundary R=R* . The Knudsen number i&=0.02. (a) corresponds to the
conditions at the base and three at the top. A simple numerkolid curve of Fig. 2a). Here,F=0.1, k} = 1.8, andR* =0.49. (b)
cal procedurdrealized inMATLAB ) enabled us to avoid the corresponds to the largedimit, when the granulate is localized at
unpleasant shooting in three parameters. The procedure ene base. Herer =5, kf =19, andR’ =2.86.
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FIG. 4. The convection threshold versus the Froude nurRber FIG. 5. The convection threshold versus the Froude nurfRber
The solid line shows th&? (F) curve atk =0.02. At largeF the ~ Shown is thek} (F) dependence & =0.02. The inset shows that
threshold R¥ approaches 28... . The dashed line is the k; goes to zero a—0. For largeF, ky/F—3.80... .
Schwarzschild’s curv&kg(F) that gives anecessarycondition for
convection. The smak- asymptotics of the Schwarzschild’s curve drops out of Eqs(1)—(3) and enters the problem only via the
is Rg=F/2. In the limit of large F, Rg(F) approaches top wall positionH/A=F. For F>1 the top wall can be
1.065%.... Theinset shows that, a¥—0, Rt approaches safely moved to infinity, and= drops out of the problem
287& ..., thethreshold of the phase-separation Instablllty Comp|ete|y_ Therefore, at |argé, the convection threshold

) R% should depend only oK. Our numerical results fully
At large F the cells are effectively located near the base, an%upport this prediction, see Fig. 4. How shokld behave at
their aspect ratio is close to unity. large F? Let us reintroduce for a moment the “physical”

. Figure 2b) correspond_s to_a Z€ero gravity=0. Here, a (dimensiongl horizontal wave numbek, ,,. The scaled
different symmetry-breaking instability occurs, the one that

' * __|I%* — *
leads tophase separatiofil7—22. WhenR exceeds the mar- ﬁi‘tlcf ligvilveesrc]:l;rlzzevt\(/fav_eer\Sri—lberkixnp?r):eFﬁ:vjl tr;Zs?:Z)lggc\jari-
ginal stability thresholdR} (F=0), the laterally symmetric "X P" y

. - *
stripe of enhanced particle density at the top wall becomegﬁlesl’d'tbsmu'd b? 'nd?fﬁe nléi_entﬁ)gt Iﬁrge':'t; htetrr(]aforekx tit
unstable and gives way to a 2D steady state. In contrast ould be proportional 15. Figure 5 shows that the quantty

e
the convection, the new steady state with a broken transla/F indeed approaches a constétfiat depends oK) at

tional symmetry isstatic no mean flow. The quantity 2'9€F.

R*(F=0) can be calculated analytica|§9). In our present 1 nese results give, for fixed values Bfandk, the nec-
notation, it is determined from the algebraic equationessary and sufficient criterion for convection. It is often use-

cothu=p, where x=(R*/2)"2 This yields R* (F=0) ful to also have a simpler and easier-to-interpret criterion,

_ - 4 i even if approximate. A simplified criterion for convection
=287 ... TDemmmum of the m?rg_'”?' stability curve can be obtained by neglecting the viscosity and heat conduc-
occurs here aki =0, that is, for an infinitely long wave-

tion terms in the linearized Eq&)—(8), that is, by taking the
... limit K—0. As the viscosity and heat conduction act against

. . N Ronvection, this procedure obviously yieldmacessarybut
is continuous. The dependencesRif andk} on the Froude . sufficient, criterion for convection.

numberF are shown_m Figs. 4 and _5. One can see thr_slt the Without the dissipative terms, Eq)—(8) coincide with
R? (F) dependence is nonmonotonic. A stronger gravity isthe |inearized equations adeal hydrodynamics otlassical
favorable for convection at very smafl [as Fig. 2a) also  fjyid with specified static profiles of temperatuFe(y) and
showd. However, this tendency is reversedrat0.16, and  gensity n(y). Even for this idealized problem, the exact
RY starts to grow withF until it saturates at large. Inits  criterion for convection can be obtained only numerically,
turn, ki goes down monotonically witfr and vanishes at and the result depends explicitly on the specific profiles
F=0. The decrease is quite slow at intermediatdout be- T, (y) and ng(y). There is, however, a simple and general
comes very rapid at very sméefl. As the phase-separation limit here in terms of the Schwarzschild’s criterip8] that
instability does not exist in classical fluid, this Idwbehav-  yields a lower bound for the convection threshold. The
ior is unique for granular fluid. Schwarzschild’s criterion guarantees that themeagonvec-
The largeF limit deserves a special attention. Here, thetion if the entropy of the fluid in the static stag&n.,Ts)
granulate is localized at the base. This regime is convenierjrows with the height, that is$'(ng,Ts)>0 for any y. For
in experiment, as particle collisions with the top walhich  the nearly elastic hard sphere model in 2D the granular en-
are in reality inelasticare avoided. A natural unit of distance tropy in the dilute limit isS(n, T) =In(T/n) [importantly, we
in this regime is\ =Ty /mg, while the time should be scaled are not making here any additional assumption, this simple
to )\/Té/z. Correspondingly{n) is defined now as the total constitutive relation forS(n,T) was already used in Egs.
number of particles per unit length in the horizontal direc-(1)—(3)]. Therefore, the Schwarzschild’s criterion can be re-
tion, divided by \. After rescaling the Froude numbé&  written in terms of the static temperature and density profiles
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and their first derivatives. For a given the static profiles
are determined solely by the relative heat loss paraniter
Therefore, the Schwarzschild’s criterion yields a critical
valueR=Rg(F) so that aR<Rg(F) there isno convection.
The opposite inequalitiR>Rg(F) yields anecessarybut of 1
course not sufficientcriterion for convection. How to find )
Rg(F)? At small enougR the spatial derivative of the en- =
tropy, S’ (y), is positive at any height=0. By increasingR

we observe that, the critical valuR=Rg(F), the entropy
derivative S’ (y) vanishes at some point It is crucial that

this point is alwaysy=0. IncreasingRr further, we would

already have amterval of heights whereS’(y)<0. There- % 0.02 0.04
fore, the Schwarzschild’s curved&) can be obtained from K

the conditionS’(y=0)=0. This curve, obtained numeri- FIG. 6. Convection threshol®} versus the Knudsen numbier

cally, is shown by the dashe_d line in Fi_g. 4. As expected, theclt F=0.1. AsK—0, the value oR} is greater than the Schwarzs-
exact(necessary and sufficigntonvection threshold curve hiig's valueRg(F =0.1)=0.05, shown by the empty circle.

always liesabovethe Schwarzschild’s curve.

The smallF and largeF asymptotics of the Schwarzs- heat conductioriboth of which scale likd) tend to suppress
child's curve can be obtained analytically. Let us first con-convection[5]. As K— 0 the viscosity and heat conduction
sider the case df<1. As will be seen from the result, here become negligible. Still, one should expect that the limiting
R<1 too, and one can represent the steady-state solutions ¥glue of the critical heat loss parameteRy_.o(F)
To(y)=1+6T4(y), andng(y)=1+dng(y), where sT;<1  =lim _ RI(F,K) is greater than the Schwarzschild's lower

and ons<1. Substituting these expressions into E8).and  poundR¢(F). This is indeed what is seen in Fig. 6, where

keeping only the first-order quantities, we obtain two veryine schwarzschild’s valuRg(F = 0.1)=0.05 is shown by the
simple linear differential equations. Solving them with the gmpty circle.

respective boundary and normalization conditions, we obtain
T«(y)=1-Ry+(R/2)y?> and ng(y)=1+F/2—R/3+(R IV. SUMMARY
—F)y—(R/2)y?. The conditionS’' (y=0)=0 then yields the
desired smalF asymptoticsRg(F<1)=F/2.

At F>1, one can conveniently use the analytic solution
for the static profiles in the Lagrangian mass coordih&te

1.5

We performed a linear stability analysis of the static state
in a horizontal layer of granular gas driven from below. The
hydrodynamic theory5] that we employed in our analysis is
expected to be valid when the mean free path of the particles

In this limit
is much smaller than any length scale described hydrody-
|3(Z) |g( JRI2)z namically. We have found the convection threshold, in terms
T()= ==, (D)= =5 —, (15  of the relative heat loss numbd, versus the two other
15(VR/2) VRI215(2) scaled numbers of the problem; the Froude nunfband the

_ 112 i . Knudsen numbeK. We have predicted the morphology of
where z=(R/2)"(1—pu), and I(---) is the modified  convection cells at the onset of convection. Rs-0, the
Bessel function of the first kindRecall that here we rescale ¢onyection instability goes over continuously into the phase-
the Eulerian coordinaty by A=To/mg and define(n) as  geparation instabilitf17-22. At large F the convection
the number of particles per unit length in the horizontal di-threshold depends only dk. We established a simple con-
rection divided by\.) Using Eq.(15), we compute they  pection between thermal granular convection and classical
derivative of the entropy thermal convection of ideal compressible fluid. The connec-
tion is given in terms of the Schwarzschild’s criterion, a uni-

2, B>
g = I R/Z)[I (2)—4214(2)] (16) versal necessarybut not sufficient condition for thermal
Ig(z) 0 1 ’ convection. A further development of the theory should ac-

count for the excluded-volume effedts3]. Importantly, the

This expression vanishes whiy{z) —4z1,(z) =0 which oc-  simple Schwarzschild’s criterion will be readily available in
curs atz=z, =0.7297.... Asy=0 corresponds tqu=0, the finite-density theory. Indeed, this condition requires only
we immediately obtailRg=2z2=1.0654 . ... AtR<Rg, the knowledge of the static profiles of the granular tempera-
we haveS’ >0 everywhere' sR= RS indeed Corresponds to ture and denSity and the constitutive relation for the granular
the Schwarzschild’s criterion. The value dRg(F>1)  entropy.
=1.0654 ... shows up as the large- plateau of the
Schwarzschild’s curve in Fig. 4. ACKNOWLEDGMENTS
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