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Onset of thermal convection in a horizontal layer of granular gas
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Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

~Received 22 August 2002; revised manuscript received 18 November 2002; published 27 February 2003!

The Navier-Stokes granular hydrodynamics is employed for determining the threshold of thermal convection
in an infinite horizontal layer of granular gas. The dependence of the convection threshold, in terms of the
inelasticity of particle collisions, on the Froude and Knudsen numbers is found. A simple necessary condition
for convection is formulated in terms of the Schwarzschild’s criterion, well known in thermal convection of
~compressible! classical fluids. The morphology of convection cells at the onset is determined. At large Froude
numbers, the Froude number drops out of the problem. As the Froude number goes to zero, the convection
instability turns into a recently discovered phase-separation instability.
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I. INTRODUCTION

Fluidized granular media exhibit a plethora of fascinati
pattern-formation phenomena that have been subject
much recent interest@1#. In this work, we address therma
~buoyancy-driven! granular convection@2–6#. Being unre-
lated to the shear or time dependence introduced by the
tem boundaries, it resembles the Rayleigh-Be`nard convec-
tion in classical fluid@7# and its compressible modification
@8–12#. In classical fluid convection requires an externa
imposed negative temperature gradient, that is a tempera
gradient in the direction opposite to gravity. In a vibroflui
ized granular medium a negative temperature gradient se
spontaneously because of the energy loss by inelastic c
sions. Convection develops when the absolute value of
temperature gradient is large enough. In the simplest mo
of inelastic hard spheres that we will use it happens when
inelasticity coefficientq5(12r )/2 exceeds a critical value
depending on the rest of the parameters of the system. H
r is the coefficient of normal restitution of particle collision

Thermal granular convection was first observed in m
lecular dynamics~MD! simulations of a system of inelast
cally colliding disks in a two-dimensional~2D! square box
@2#. The boundaries of the box@2# did not introduce any
shear or time dependence, the system was driven by a st
free thermalizing base. The top wall was perfectly elas
while the lateral boundaries were either elastic or period
Experiment with a highly fluidized three-dimensional gran
lar flow @3# gives strong evidence for thermal convectio
though energy loss at the side walls introduces complicat
@3,6#. A clear identification of thermal convection in exper
ment requires a large aspect ratio in the horizontal direct
so thatmultipleconvection cells can be observed. MD sim
lations in 2D of a vibrofluidized granular system with a lar
aspect ratio indeed show multiple convection cells@4#.

This work deals with a theory of thermal granular conve
tion in a system with a large aspect ratio. Recently, a c
tinuum model of thermal granular convection has been
mulated@5# in the framework of the Navier-Stokes granul
hydrodynamics. In the dilute limit, the Navier-Stokes hydr
dynamics~or, more precisely, gasdynamics! is systematically
derivable from more fundamental kinetic equations@13,14#.
Like any other hydrodynamic approach, the Navier-Sto
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hydrodynamics demands small Knudsen numbers for its
lidity. In addition, it has been shown that at moderate inel
ticities q nonhydrodynamic effects~such as the lack of scal
separation, the normal stress difference and non-Gaussia
in the particle velocity distribution! may become importan
@15#. Therefore, the Navier-Stokes granular hydrodynam
is expected to be accurate quantitatively only for nearly e
tic collisions, q!1. Though restrictive, the nearly elast
limit is conceptually important. Also, one can expect some
the results, obtained in this limit, to be still qualitative
valid for larger inelasticities, such as those encountered
experiment.

In Ref. @5# the full set of nonlinear hydrodynamic equa
tions for thermal granular convection was solved numerica
in a 2D box with aspect ratio 1. It was observed, in quali
tive agreement with MD simulations@2#, that the static state
of the system~a steady state with a zero mean flow! gives
way to convection via a supercritical bifurcation, the inela
ticity q being the control parameter. The present work e
ploys the same hydrodynamic formulation@5# to perform a
systematiclinear stabilityanalysis of the static state. We de
termine the convection threshold as a function of the sca
parameters of the problem and of the horizontal wave nu
ber of small perturbations. This analysis makes it possible
predict the convection threshold and determine the morp
ogy of the convection cells in a system with an arbitra
aspect ratio, including an infinite horizontal layer, a stand
setting for convection in classical fluids@7,16#. We also for-
mulate a simplenecessary~but not sufficient! criterion for
thermal granular convection in terms of the Schwarzschi
criterion, well known in thermal convection of~compress-
ible! classical fluids@8#. Finally, we take the limit of a zero
gravity and establish the connection between thermal c
vection and a recently discovered phase-separation inst
ity @17–22#.

II. MODEL AND STATIC STATE

Let a big number of identical smooth hard disks wi
diameterd and massm move and inelastically collide inside
an infinite two-dimensional horizontal layer with heightH.
The gravity accelerationg is in the negativey direction. The
system is driven by a rapidly vibrating base. We shall mo
©2003 The American Physical Society06-1
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it in a simplified way by prescribing a constant granular te
peratureT0 at y50. The top wall is assumed elastic. Hydr
dynamics deals with coarse-grained fields; the number d
sity of grainsn(r ,t), granular temperatureT(r ,t), and mean
flow velocity v(r ,t). In the dilute limit, the scaled governin
equations are@5#

dn/dt1n“•v50, ~1!

n dv/dt5“•P2F n ey , ~2!

n dT/dt1nT“•v5K “•~T1/2
“T!2KR n2 T3/2. ~3!

Here, d/dt5]/]t1v•“ is the total derivative,P52nT I
1(1/2) K T1/2D̂ is the stress tensor,D5(1/2)@¹v1(¹v)T#

is the rate of deformation tensor,D̂5D2(1/2) tr(D)I is the
deviatoric part ofD, andI is the identity tensor. In the dilute
limit, the bulk viscosity of the gas is negligible compared
the shear viscosity@13#, so only the shear viscosity is take
into account. In addition, we have neglected the small v
cous heating term in the heat balance Eq.~3!. The inelastic
contribution to the heat flux@14# is proportional toq and can
be safely neglected at smallq. In the 2D geometry, the thre
scaled parameters entering Eqs.~2! and ~3! are the Froude
number F5mgH/T0, the Knudsen number K
52p21/2(dH^n&)21, and the relative heat loss parame
R58qK22. Furthermore,̂n& is the total number of particle
per unit length in the horizontal direction, divided by th
layer heightH. It will be convenient to use the relative he
loss numberR instead ofq. In Eqs.~1!–~3!, the distance is
measured in the units ofH, the time in units ofH/T0

1/2, the
density in units of̂ n&, the temperature in units ofT0, and
the velocity in units ofT0

1/2. The Navier-Stokes hydrody
namic model is expected to be valid when the mean free p
of the particles is much smaller than any length scale~and
the mean collision time is much smaller than any time sca!
described hydrodynamically. This implies, in particular, th
the Knudsen number should be small,K!1.

The boundary conditions for the temperature areT(x,y
50,t)51 at the base and a zero normal component of
heat flux at the upper wall,]T/]y(x,y51,t)50. For veloci-
ties, we demand zero normal components and slip~no stress!
conditions at the boundaries. The total number of particle
the system is conserved

lim
L→`

1

2LE2L

L

dxE
0

1

dy n~x,y,t !51, ~4!

where we have introduced the horizontal dimension 2L. The
hydrodynamic problem is characterized by the three sca
numbersF, K, andR.

The simplest steady state of the system is the static s
no mean flow. At a nonzero gravity the densityns and tem-
peratureTs of the static state depend only ony, and are
described by the equations

~ns Ts!81F ns50 and ~Ts
1/2Ts8!82R ns

2 Ts
3/250, ~5!
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where the primes denote they derivatives. The boundary
conditions areTs(0)51 and Ts8(1)50, the normalization
condition is*0

1dy ns(y)51. The static state~see Fig. 1! is
characterized bytwo scaled numbers:F and R, and can be
found analytically by transforming from the Eulerian coord
nate y to the Lagrangian mass coordinatem(y)
5*0

yns(y8)dy8 @5#. At large enoughR, a density inversion
develops: a denser~heavier! gas is located on the top of a
underdense~lighter! gas. This is clearly a destabilizing effec
that drives thermal convection. However, this effect is n
ther sufficient, nor necessary for convection, see below.
actual ~necessary and sufficient! criterion should take into
account the heat conduction and viscosity that scale likeK in
the governing equations and have a stabilizing role. A sm
sinusoidal perturbation in the horizontal direction is unsta
with respect to convection if the relative heat loss parame
R exceeds a critical value that depends onF, K, and the
horizontal wave number.

III. THE LINEAR STABILITY ANALYSIS

The linear stability analysis involves linearization of Eq
~1!–~3! around the static solutionsns(y) and Ts(y). The
linearized equations are

]ñ

]t
1ns

]vx

]x
1

]

]y
~nsvy!50, ~6!

ns

]v

]t
52“~nsT̃1Tsñ!1

1

2
K“•~Ts

1/2D̂!2Fñey , ~7!

nsS ]T̃

]t
1Ts8vyD 1nsTs“•v5K¹2~Ts

1/2T̃!2KRns
2Ts

3/2

3S 2ñ

ns
1

3T̃

2Ts
D , ~8!

whereñ, T̃, andv denote small perturbations. Exploiting th
translational symmetry of the static state in the horizon
direction, one can consider a single-Fourier mode inx

FIG. 1. Static temperature~solid line! and density~dashed line!
profiles forF50.1 andR50.5.
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ñ~x,y,t !5e2gtN~y!coskxx,

T̃~x,y,t !5e2gt Q~y!coskxx,

vx~x,y,t !5e2gtu~y!sinkxx,

vy~x,y,t !5e2gtv~y!coskxx, ~9!

where g is the scaled growth or decay rate, andkx is the
scaled horizontal wave number. Substituting Eq.~9! into Eqs.
~6!–~8! and eliminatingN, we obtain three homogeneous o
dinary differential equations that can be written as a sin
equation for the eigenvectorU(y)5@Q(y),u(y),v(y)#, cor-
responding to the eigenvalueg,

AU91BU81CU50, ~10!

where

A5S K a0 0 0

0 K a0 /4 0

0 0 K a0/42nsTs /g
D , ~11!

B5S 2Ka1 0 22KRns
2Ts

3/2/g2nsTs

0 Ka1 /4 kxnsTs /g

2ns 2kxnsTs /g Ka1/42Tsns8/g
D ,

~12!

while the elements of matrixC are

C115K a223KRns
2a0/22Kkx

2a01gns ,

C12522KRns
2Ts

3/2kx /g2kxnsTs ,

C13522KRnsTs
3/2ns8/g2nsTs8 ,

C215kxns ,

C225kx
2nsTs /g1gns2Kkx

2a0/4,

C235kxTsns8/g2Kkxa1/4,

C3152ns8 ,

C3252Kkxa1/4,

C335~Ts9ns1Ts8ns8!/g1gns2Kkx
2a0/4. ~13!

We have denoted for brevitya05Ts
1/2(y), a15a08 , and a2

5a09 . The boundary conditions for the functionsQ, u, andv
are the following:

Q~0!5Q8~1!5u8~0!5u8~1!5v~0!5v~1!50. ~14!

Equation ~10! with the boundary conditions~14! define a
linear boundary-valueproblem, there are three bounda
conditions at the base and three at the top. A simple num
cal procedure~realized inMATLAB ! enabled us to avoid the
unpleasant shooting in three parameters. The procedure
02130
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ploys the linearity of the problem. We first complement t
three boundary conditions at the base by threearbitrary
boundary conditionsat the base, and compute numerically
three independent solutions of Eq.~10!. Thegeneralsolution
can be represented as a linear combination of these t
independent solutions that includes three arbitrary coe
cients. Demanding that the three remaining boundary co
tions at the topbe satisfied, we obtain three homogeneo
linear algebraic equations for the coefficients. A nontriv
solution requires that the determinant vanish, which yie
the eigenvalueg. Varying R at fixedF, K, andkx , we deter-
mine the critical valueR5Rc for instability from the condi-
tion Reg50. We found this algorithm to be accurate an
efficient.

In the whole region of the parameter space that we
plored we found that Img50 at the instability onset. There
fore, thermal granular convection does not exhibit overs
bility and can be analyzed in terms of marginal stabili
Figure 2~a! shows the marginal stability curves versus t
horizontal wave numberkx at a fixedK and two different
values ofF @23#. The curves exhibit minima (kx* ,Rc* ), simi-
larly to the convection in classical fluids@7#. Therefore, the
convection threshold in the horizontally infinite layer isR
5Rc* . Close to the onset, the expected horizontal size of
convection cell is 2p/kx* . Figure 3 depicts these convectio
cells obtained by plotting the field lines of the respecti
velocity field @u(y)sinkx x, v(y)coskx x#, found numerically.
One can see that at smallF the cells occupy the whole laye
of granular gas and are elongated in the horizontal direct

FIG. 2. The critical values of the relative heat loss parameteR
for the convection instability@nonzero gravity,~a!# and phase-
separation instability@zero gravity,~b!# versus the horizontal wave
numberkx . The Knudsen numberK50.02.

FIG. 3. The convection cells at the instability onsetk5kx* and
R5Rc* . The Knudsen number isK50.02. ~a! corresponds to the
solid curve of Fig. 2~a!. Here,F50.1, kx* 51.8, andRc* 50.49. ~b!
corresponds to the large-F limit, when the granulate is localized a
the base. Here,F55, kx* 519, andRc* 52.86.
6-3
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At largeF the cells are effectively located near the base, a
their aspect ratio is close to unity.

Figure 2~b! corresponds to a zero gravity,F50. Here, a
different symmetry-breaking instability occurs, the one th
leads tophase separation@17–22#. WhenR exceeds the mar
ginal stability thresholdRc* (F50), the laterally symmetric
stripe of enhanced particle density at the top wall becom
unstable and gives way to a 2D steady state. In contras
the convection, the new steady state with a broken tran
tional symmetry is static: no mean flow. The quantity
Rc* (F50) can be calculated analytically@19#. In our present
notation, it is determined from the algebraic equati
cothm5m, where m5(Rc* /2)1/2. This yields Rc* (F50)
52.8785 . . . . Theminimum of the marginal stability curve
occurs here atkx* 50, that is, for an infinitely long wave
length.

We found that the crossover between the two instabili
is continuous. The dependences ofRc* andkx* on the Froude
numberF are shown in Figs. 4 and 5. One can see that
Rc* (F) dependence is nonmonotonic. A stronger gravity
favorable for convection at very smallF @as Fig. 2~a! also
shows#. However, this tendency is reversed atF.0.16, and
Rc* starts to grow withF until it saturates at largeF. In its
turn, kx* goes down monotonically withF and vanishes a
F50. The decrease is quite slow at intermediateF, but be-
comes very rapid at very smallF. As the phase-separatio
instability does not exist in classical fluid, this low-F behav-
ior is unique for granular fluid.

The large-F limit deserves a special attention. Here, t
granulate is localized at the base. This regime is conven
in experiment, as particle collisions with the top wall~which
are in reality inelastic! are avoided. A natural unit of distanc
in this regime isl5T0 /mg, while the time should be scale
to l/T0

1/2. Correspondingly,̂ n& is defined now as the tota
number of particles per unit length in the horizontal dire
tion, divided by l. After rescaling the Froude numberF

FIG. 4. The convection threshold versus the Froude numbeF.
The solid line shows theRc* (F) curve atK50.02. At largeF the
threshold Rc* approaches 2.85 . . . . The dashed line is the
Schwarzschild’s curveRS(F) that gives anecessarycondition for
convection. The small-F asymptotics of the Schwarzschild’s curv
is RS.F/2. In the limit of large F, RS(F) approaches
1.065 14 . . . . The inset shows that, asF→0, Rc* approaches
2.8785 . . . , thethreshold of the phase-separation instability.
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drops out of Eqs.~1!–~3! and enters the problem only via th
top wall positionH/l5F. For F@1 the top wall can be
safely moved to infinity, andF drops out of the problem
completely. Therefore, at largeF, the convection threshold
Rc* should depend only onK. Our numerical results fully
support this prediction, see Fig. 4. How shouldkx* behave at
large F? Let us reintroduce for a moment the ‘‘physica
~dimensional! horizontal wave numberkx ph . The scaled
critical wave numberkx* 5kx ph* H5kx ph* l F. As the product
kx ph* l is the scaled wave number in the newly rescaled v
ables, it should be independent ofF at largeF. Therefore,kx*
should be proportional toF. Figure 5 shows that the quantit
kx* /F indeed approaches a constant~that depends onK) at
largeF.

These results give, for fixed values ofF andK, the nec-
essary and sufficient criterion for convection. It is often us
ful to also have a simpler and easier-to-interpret criteri
even if approximate. A simplified criterion for convectio
can be obtained by neglecting the viscosity and heat cond
tion terms in the linearized Eqs.~6!–~8!, that is, by taking the
limit K→0. As the viscosity and heat conduction act agai
convection, this procedure obviously yields anecessary, but
not sufficient, criterion for convection.

Without the dissipative terms, Eqs.~6!–~8! coincide with
the linearized equations ofideal hydrodynamics ofclassical
fluid with specified static profiles of temperatureTs(y) and
density ns(y). Even for this idealized problem, the exa
criterion for convection can be obtained only numerical
and the result depends explicitly on the specific profi
Ts(y) and ns(y). There is, however, a simple and gene
limit here in terms of the Schwarzschild’s criterion@8# that
yields a lower bound for the convection threshold. T
Schwarzschild’s criterion guarantees that there isno convec-
tion if the entropy of the fluid in the static stateS(ns ,Ts)
grows with the height, that is,S8(ns ,Ts).0 for any y. For
the nearly elastic hard sphere model in 2D the granular
tropy in the dilute limit isS(n,T)5 ln(T/n) @importantly, we
are not making here any additional assumption, this sim
constitutive relation forS(n,T) was already used in Eqs
~1!–~3!#. Therefore, the Schwarzschild’s criterion can be
written in terms of the static temperature and density profi

FIG. 5. The convection threshold versus the Froude numbeF.
Shown is thekx* (F) dependence atK50.02. The inset shows tha
kx* goes to zero asF→0. For largeF, kx* /F→3.80 . . . .
6-4
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and their first derivatives. For a givenF, the static profiles
are determined solely by the relative heat loss parameteR.
Therefore, the Schwarzschild’s criterion yields a critic
valueR5RS(F) so that atR,RS(F) there isno convection.
The opposite inequalityR.RS(F) yields anecessary~but of
course not sufficient! criterion for convection. How to find
RS(F)? At small enoughR the spatial derivative of the en
tropy, S8(y), is positive at any heighty>0. By increasingR
we observe that, the critical valueR5RS(F), the entropy
derivativeS8(y) vanishes at some pointy. It is crucial that
this point is alwaysy50. IncreasingR further, we would
already have aninterval of heights whereS8(y),0. There-
fore, the Schwarzschild’s curve RS(F) can be obtained from
the conditionS8(y50)50. This curve, obtained numer
cally, is shown by the dashed line in Fig. 4. As expected,
exact ~necessary and sufficient! convection threshold curve
always liesabovethe Schwarzschild’s curve.

The small-F and large-F asymptotics of the Schwarzs
child’s curve can be obtained analytically. Let us first co
sider the case ofF!1. As will be seen from the result, her
R!1 too, and one can represent the steady-state solution
Ts(y)511dTs(y), and ns(y)511dns(y), where dTs!1
anddns!1. Substituting these expressions into Eq.~5! and
keeping only the first-order quantities, we obtain two ve
simple linear differential equations. Solving them with t
respective boundary and normalization conditions, we ob
Ts(y).12Ry1(R/2)y2 and ns(y).11F/22R/31(R
2F)y2(R/2)y2. The conditionS8(y50)50 then yields the
desired small-F asymptotics,RS(F!1).F/2.

At F@1, one can conveniently use the analytic soluti
for the static profiles in the Lagrangian mass coordinate@5#.
In this limit

Ts~z!5
I 0

2~z!

I 0
2~AR/2!

, ns~z!5
I 0

2~AR/2!z

AR/2 I 0
2~z!

, ~15!

where z5(R/2)1/2(12m), and I n(•••) is the modified
Bessel function of the first kind.~Recall that here we rescal
the Eulerian coordinatey by l5T0 /mg and definê n& as
the number of particles per unit length in the horizontal
rection divided byl.! Using Eq. ~15!, we compute they
derivative of the entropy

S85
I 0

2~AR/2!

I 0
3~z!

@ I 0~z!24zI1~z!#. ~16!

This expression vanishes whenI 0(z)24zI1(z)50 which oc-
curs atz5z* 50.72977 . . . . As y50 corresponds tom50,
we immediately obtainRS52z

*
2 51.065 14 . . . . At R,RS ,

we haveS8.0 everywhere, soR5RS indeed corresponds t
the Schwarzschild’s criterion. The value ofRS(F@1)
51.065 14 . . . shows up as the large-F plateau of the
Schwarzschild’s curve in Fig. 4.

Now let us return to the exact~necessary and sufficien!
criterion for convection, found by solving the full linearize
problem numerically. The dependence of the convect
thresholdRc* on the Knudsen numberK ~at a fixedF) is
shown in Fig. 6.Rc* grows withK, because the viscosity an
02130
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heat conduction~both of which scale likeK) tend to suppress
convection@5#. As K→0 the viscosity and heat conductio
become negligible. Still, one should expect that the limiti
value of the critical heat loss parameterRK→0(F)
5 lim

K→0
Rc* (F,K) is greater than the Schwarzschild’s low

boundRS(F). This is indeed what is seen in Fig. 6, whe
the Schwarzschild’s valueRS(F50.1).0.05 is shown by the
empty circle.

IV. SUMMARY

We performed a linear stability analysis of the static st
in a horizontal layer of granular gas driven from below. T
hydrodynamic theory@5# that we employed in our analysis i
expected to be valid when the mean free path of the parti
is much smaller than any length scale described hydro
namically. We have found the convection threshold, in ter
of the relative heat loss numberR, versus the two other
scaled numbers of the problem; the Froude numberF and the
Knudsen numberK. We have predicted the morphology o
convection cells at the onset of convection. AsF→0, the
convection instability goes over continuously into the pha
separation instability@17–22#. At large F the convection
threshold depends only onK. We established a simple con
nection between thermal granular convection and class
thermal convection of ideal compressible fluid. The conn
tion is given in terms of the Schwarzschild’s criterion, a un
versal necessary~but not sufficient! condition for thermal
convection. A further development of the theory should a
count for the excluded-volume effects@13#. Importantly, the
simple Schwarzschild’s criterion will be readily available
the finite-density theory. Indeed, this condition requires o
the knowledge of the static profiles of the granular tempe
ture and density and the constitutive relation for the granu
entropy.
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FIG. 6. Convection thresholdRc* versus the Knudsen numberK
at F50.1. AsK→0, the value ofRc* is greater than the Schwarzs
child’s valueRS(F50.1).0.05, shown by the empty circle.
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